Studying the effects of geologic nitrogen on carbon cycling Ida Fischer University of California Davis

Presentation overview

- Background of project
- Research question
- Experiment setup
- Results
- Discussion
- Conclusion

Formation of geologic N

Accumulation and burial of organic matter

Diagenesis

Low-grade metamorphism

Organic N in shale and mudstones

Fixed NH₄⁺ in mica

Root to shoot ratios

Source: waternut.org

- Low nutrient levels result in a high root to shoot ratio
- As nutrient levels increase the root to shoot level will decrease

Research goal:

 To understand how geologic nitrogen impacts the carbon cycle and if it is an available source of nutrients for plants.

Research question:

• How does geologic nitrogen impact biomass production?

More specifically how will geologic nitrogen effect root to shoot ratios?

Output the correlated to plant nutrition?

Hypothesis:

- Plants without geologic N sources will have the highest root to shoot ratios (the lowest above ground biomass)
- Plants with geologic N inputs will show decreased root to shoot ratios as the plant can spend more nitrogen on above ground biomass production; however there may be a threshold for increased biomass production as other nutrients limit plant growth

The project

- Pot Study in a growth chamber
 - Controlled temperature
 - Controlled photo period
- Species: Bromus carinatus
- Grown from July 24 October 25

The project (continued)

• Four treatments

- > Silica
- Silica + Nitrogen fertilizer
- > Geologic Nitrogen
- Geologic Nitrogen + Nitrogen fertilizer

Silica + N

Geo N +N

Geo N

Silica

Nutrient management within the project

Solution

- Started with solution comprised of
 - Ca(H₂PO₄)₂, CaSO₄, K₂SO₄, MgSO₄, Na₂MoO₄, and a micronutrient solution
- > Diluted original solution by 1/2 strength
- > Changed again (removed CaSO4)
- Those treatments that received N fertilization
 - > (NH₄)₂SO₄
 - > Applied 3 times

Nutrient additions- total

Macronutrients	mmols	<u>g/m2</u>	<u>kg/ha</u>
Phosphorus	0.400	7.67	76.71
Calcium	0.743	9.09	90.91
Magnesium	2.510	21.41	214.07
Potassium	0.799	6.81	68.14
Sulfur	2.376	20.26	202.64
Micronutrients	<u>µmols</u>	<u>g/m2</u>	<u>kg/ha</u>
Boron	0.002	0.00002	0.0002
Cu	0.073	0.00062	0.0062
Iron	0.613	0.00523	0.0523
Mn	0.052	0.00044	0.0044
Zn	0.483	0.00412	0.0412
Мо	0.080	0.00069	0.0069
	mmols	<u>g/m2</u>	<u>kg/ha</u>
Nitrogen Additions	2.84	10.95	109.53

N:P (mol:mol) = 7:1

Results: average growth

average growth

Results: average biomass

Average Root biomass

Average Shoot Biomass

Results: average total biomass

Average Total Biomass

Root to shoot in the project

Results: root to shoot ratios for all plants

Results: average root to shoot ratio

Average Root to Shoot Ratio

Results summary

- Average growth:
 - Geo N+N had the greatest growth followed by geo N, then silica + N, with silica expressing the least average height
- Root to shoot ratios:
 - Geo N had the highest root to shoot ratio, followed by geoN+N, then silica + N, to silica showing the lowest ratios
- Average biomass:
 - Geo N+N overwhelmingly had the greatest biomass followed by geo N, then silica + N, with silica having the least average biomass
- Average root biomass:
 - Geo N+N had the greatest root biomass followed by geo N, then silica + N, and silica
- Average shoot biomass:
 - Geo N+ N had the greatest shoot biomass, followed by geo N, silica + N, with silica having the least shoot mass

Discussion

- Root to shoot ratios did not come out as hypothesized
 - Possible explanations for resultant R: S ratios for each treatment
 - <u>Silica-</u> did not have enough nutrients to invest in root growth to mine for more nutrients
 - <u>Silica +N</u>- may have increased roots to mine but received no benefit and stopped increasing roots
 - <u>Geo N-</u>increased root mass to mine for nutrients and received benefit so continued to increase root mass
 - <u>Geo N+N-</u> did some root mining and received some benefit but also had other sources of N

Conclusions

- Geo N treatment had greater biomass than both the silica and the silica +N suggesting that N was available
- Root biomass did not follow the expected trend
- The increased root to shoot ratios in the Geo N pots suggest that the plants are receiving some benefit from the Geo N fertilization otherwise the plant would not continue to invest in root growth-however the extent of production affectation is undetermined

Conclusions (continued)

 The extent to which geo N impact plant growth is unknown because of other nutrient limitations not accounted for in this study